The Salmonid Population Viability Project

A system to forecast the demographic and genetic viability of Salmonid fish across broad regions under climate change

Research Team

- □ UGA River Basin Center: Seth Wenger, Doug Leasure
- Trout Unlimited: Helen Neville, Dan Dauwalter, Robin Bjork, Kurt Fesenmyer and Jean Barney
- University of Montana: Erin Landguth
- □ **USGS:** Jason Dunham, Nate Chelgren
- USFS Rocky Mountain Research Station: Dan Isaak, Charlie Luce & Zach Holden
- University of Nevada-Reno: Mary Peacock
- Lupine Logic, Inc: Joe Glassy
- □ US Fish & Wildlife Service: Doug Peterson

Stakeholder Groups

- **Trout Unlimited**
- U.S. Forest Service
- U.S. Fish and Wildlife Service
- Bureau of Land Management Utah Dept. of Natural
- Nevada Dept. of Wildlife
- California Dept. of Fish and Wildlife
- Oregon Dept. of Fish and Wildlife

- Montana Fish and Wildlife and Parks
- Seattle City Light

Resources

Private Land Owners

Meeting with Stakeholders April 2016, Reno, NV

ST-PVM & CDMetaPop

Spatio-Temporal Population Viability Model (ST-PVM)

- Demographic population viability assessment
 for multiple isolated populations simultaneously
 - Data-rich populations inform management for data-poor populations

CDMetaPOP

- Demo-genetic population viability assessment for metapopulations
 - Individual-based simulations of fish movement and population genetics

The Motivation for ST-PVM: Improved Conservation Planning

- Value added to existing data
- How healthy is each population?
- Which would benefit most from management actions?
- Where/how would reintroductions be most beneficial?

ST-PVM: Lahontan Cutthroat Trout

Ideal for ST-PVM development:

- Small, isolated populations
- Intensively sampled (lots of data)
- Conservation priority
- Stakeholder cooperation

ST-PVM: A Bayesian Hierarchical Model

Observation Model

Sampling Model

Process Model

ST-PVM: Observation Model

ST-PVM: Observation Model

ST-PVM: Sampling Model

Crowdsourcing desiccation data

- Desiccation is difficult to predict
- Observation data are limited
- App for crowd-sourcing data from backcountry hikers

(iNaturalist platform)

ST-PVM: Process Model

ST-PVM: Process Model

- Stream Temperature
- High Flow Magnitude
- Low Flow Magnitude
- Severe floods
- Wildfires

- Population Extent
- Brook Trout Density
- Low Flow Magnitude
- NDVI

ST-PVM Covariates: Stream Temperature

ST-PVM Covariates: Hydrology

NOAA's National Weather Service

Cooperative Observer Program

ST-PVM Covariates: Brook Trout Density

Observation Model

Sampling Model

Process Model

Year

ST-PVM Covariates: Riparian Vegetation

Normalized Difference Vegetation Index (NDVI) Normalized Difference Water Index (NDWI)

ST-PVM Covariates: Wildfires

Proportion of drainage burned each year

Covariate Effects on Population Parameters

ST-PVM: Process Model

ST-PVM: Forecasting

Google Earth Interactive Map

Reintroduction Scenarios

Introduce 10 fish

Introduce 10 fish 3 years in a row

Brook Trout Management Scenarios

Observed BKT Densities

Simulated BKT Removal

Brook Trout Management Scenarios

Observed BKT Densities

Simulated BKT Increase

Metapop Reconnection Scenarios

Metapop Reconnection Scenarios

Going forward

Ongoing model development

- New covariates, new fish data, alternate model structures, etc.
- Apply to new species
- Simulate effects of changing climates
- □ Hand-off to partners (state management agencies)
 - Fish database
 - STPVM model
 - Management scenario simulation tool
- Remaining hurdle:

How will managers collect data for covariates at new sites? e.g. Average NDVI in upstream riparian zone

GeodataCrawler.com

A Centralized National Geodatabase & Automated Multi-scale Data Crawler

Acknowledgements: Funding

NASA grant number NNX14AC91G Bureau of Land Management Trout Unlimited USFWS